全国统一咨询电话 4006-303-880
汇上优课 保定学大教育 高中辅导 保定学大教育分享高中数学排列组合公式

保定学大教育分享高中数学排列组合公式

2022-07-26 11:50分类:高中辅导阅读:148 分享
文章导语
数学学习困难的研究是数学教学与实践中一个引人注目的问题,但是数学又是一个拉分很大的科目,大家学习完最好总结一下知识点和公式。小编整理了高中数学排列组合公式,希望可以帮助大家!

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。

一、排列组合定义

从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

二、排列组合公式

A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

C-Combination 组合数

A-Arrangement 排列数

n-元素的总个数

m-参与选择的元素个数

!-阶乘

三、排列组合基本计数原理

加法原理与分布计数法

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

乘法原理与分布计数法

1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

 

以上就是保定学大教育为您提供保定学大教育分享高中数学排列组合公式的全部内容,更多内容请进入高中辅导栏目 查看

温馨提示: 提交留言后老师会第一时间与您联系! 热线电话:4006-303-880
【学校】咨询热线: 4006-303-880
以上信息知识产权归具体机构所有 | 招生合作 | 免责声明 | 版权/投诉