1、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是高中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
2、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
3、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
戴氏教育开办至今,教学点众多,遍及全国,大多处于各大城市中心。为学员节约了来回时间成本。方便有学习需求的学员,就近入读。
目前戴氏教育长期开设“VIP一对一”、“2-5人精品小班”、“决胜大师”班三种班型,为不同学习需求的同学,制定个性课程,滚动开班。
教师根据课型不同,变换不同教学特色,激发学生兴趣。戴氏教育根据课堂内容和学生水平的不同,采用不同的教学形式,寓教于乐。
心理辅导师,任课老师,学管,家长,形成一个环形结构。为学生处于被服务的中心,形成四位一体,为学生提供全方位的帮助。
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
如果想了解更多成都温江戴氏教育的相关课程内容,或了解成都温江戴氏教育学校地址、课程安排、学习费用等相关信息,可以点击下方和我们的客服取得联系,也可拨打页面上方的电话,我们期待您的咨询!
以上就是成都戴氏教育温江校区为您提供成都温江高一数学暑假辅导班推荐的全部内容,更多内容请进入高中辅导栏目 查看