全国统一咨询电话 4006-303-880
汇上优课 济南迪诺教育 高中辅导 高中数学常见的四大数学思想介绍

高中数学常见的四大数学思想介绍

2023-12-14 10:12分类:高中辅导阅读:174 分享
新闻导读

要学好数学,学会解题是关键。在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧,其中数学思想方法在解题中有不可忽视的作用,下面一起来看看高中数学常见的四大数学思想。

高中数学思想

数学思想方法之方程、转化与化归
转化与化归思想在高考中也占有十分重要的地位,数学问题的解决,总离不开转化与化归.本节课老师给大家总结并分析了函数与方程思想以及转化与化归思想的常见题型,并重点讲解了函数与方程、转化与化归在解题中的灵活运用。

数学思想方法之数形结合
数形结合思想是借助于数学图形解决数学问题,它可以使复杂的问题简单化,抽象的问题直观化,是解决综合问题的得力助手。正是因为数形结合的这种优越性,它已经成为高考必考的数学思想方法。在这节课中,老师通过典例精析给同学们总结了数形结合思想在高中数学各个板块中的灵活运用,帮助你形成数形结合的思维方式,突破数学难题。

数学思想方法之分类讨论
分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数学真题,不管是文科还是理科,同学们在解决最后的数学综合问题时,基本上都需要分类讨论。本节课老师给同学们深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。
数学思想方法之函数
函数与方程思想是非常重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多;

必修二数学空间几何必背公式知识点

一、立体几何常用公式

S(圆柱全面积)=2πr(r+L);

V(圆柱体积)=Sh;

S(圆锥全面积)=πr(r+L);

V(圆锥体积)=1/3Sh;

S(圆台全面积)=π(r^2+R^2+rL+RL);

V(圆台体积)=1/3[s+S+√(s+S)]h;

S(球面积)=4πR^2;

V(球体积)=4/3πR^3。

二、立体几何常用定理

(1)用一个平面去截一个球,截面是圆面。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。

(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。

(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。

 

以上就是济南迪诺教育为您提供高中数学常见的四大数学思想介绍的全部内容,更多内容请进入高中辅导栏目 查看

温馨提示: 提交留言后老师会第一时间与您联系! 热线电话:4006-303-880
济南迪诺教育地址:济南迪诺洪楼分校、济南迪诺槐荫分校、济南迪诺平阴分校...
【学校】咨询热线: 4006-303-880
以上信息知识产权归具体机构所有 | 招生合作 | 免责声明 | 版权/投诉