全国统一咨询电话 4006-303-880
汇上优课 长春培训 长春博大教育 学习资料 高中数学几何解题方法技巧

高中数学几何解题方法技巧

2024-11-01 06:36阅读:671 分享
导语

高中数学解析几何和立体几何都需要大家在画图看图方面有足够的能力,如果空间想象能力不够,不会画辅助线,很多题都没法解决。而在高考中立体几何解析几何除了有填空简答之外还有两道大题,这些题不会做,高考数学就不可能得高分。

高中数学几何解题方法技巧

1.平行、垂直位置关系的论证的策略:

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:

主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:

(2)直线和平面所成的角

①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.

(3)二面角

①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:

(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.

点击查看:数学答题技巧及常用解题方法

3.空间距离的计算方法与技巧:

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4.熟记一些常用的小结论,诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

6.与球有关的题型,只能应用“老方法”,求出球的半径即可。

7.立体几何读题:

(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。

(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。

(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

往期精彩
长春高三复读补习学校一览表
文综差怎么办?有什么办法可以补起来吗?
2021高考英语完形填空解题方法技巧
高中孩子成绩不稳定是什么因素导致的?
初中数学常见的五大学习技巧
如果想了解更多长春博大教育的相关课程内容,或了解长春博大教育学校地址、课程安排、学习费用等相关信息,可以拨打页面上方的电话,我们期待您的咨询!​

以上就是长春博大教育为您提供高中数学几何解题方法技巧的全部内容,更多内容请进入学习资料 查看

温馨提示: 提交留言后老师会第一时间与您联系! 热线电话:4006-303-880
【学校】咨询热线: 4006-303-880
以上信息知识产权归具体机构所有 | 招生合作 | 免责声明 | 版权/投诉